

18th January 2024

YARMANY EXPLORATION UPDATE

HIGHLIGHTS:

- Large scale lithium potential confirmed at Yarmany with thick, stacked pegmatites intersected in maiden AC and RC drilling.
- Assay results show low level lithium mineralisation and indicate presence of fertile, highly fractionated LCT pegmatites. This data is highly significant from an exploration targeting perspective.
- Geochemical vectors predict more favourable conditions for economic lithium mineralisation south of the main F-camp pegmatite.
- The upcoming drill program will test this new target area in addition to other priority regional lithium prospects at Yarmany.
- Metal Hawk is well funded following the recent \$3.5m capital raise.
- Drilling to commence shortly.

Metal Hawk Limited (**ASX: MHK**, "**Metal Hawk**", "the **Company**") is pleased to provide an update on exploration activities at the Yarmany Project, located 40km north-west of Coolgardie in Western Australia. The Yarmany Project covers an area of 282km² with 50km of strike along the Ida Fault, a major regional structure on the western margin of the Kalgoorlie Terrane.

Metal Hawk has completed its maiden aircore (AC) and reverse circulation (RC) drilling programs at the F-camp prospect area, located 16km south of the northern boundary of the Yarmany Project (Figure 1). Regional exploration activities are continuing to generate new lithium and nickel sulphide targets with drilling set to recommence in February 2024. Metal Hawk remains well funded with over \$3.5m in cash, enabling the Company to continue to explore these targets for lithium and nickel discoveries.

Following detailed reconnaissance exploration activities of mapping and geochemistry, the drilling at F-camp has confirmed a flat to shallow dipping orientation of numerous stacked pegmatite sheets, which show good continuity and thicknesses of up to 58m downhole. Multielement assay results show that the most fractionated pegmatites occur on the southern F-camp traverse and further drilling is warranted.

Metal Hawk's Managing Director Will Belbin commented: "The presence of multiple thick LCT pegmatites confirmed by drilling encourages us for future regional lithium exploration success at Yarmany. The pegmatites drilled show positive signs of fertility particularly at the southern end of the main F-camp pegmatite, with geochemical ratios supporting favourable fractionation trends."

"We will be carrying out an additional drill traverse south of the main F-camp pegmatite with our next round of drilling in February, as we continue to test this exciting prospect. We also look forward to testing a number of new priority lithium and nickel sulphide target areas along the highly prospective Ida Fault in our upcoming drilling campaign."

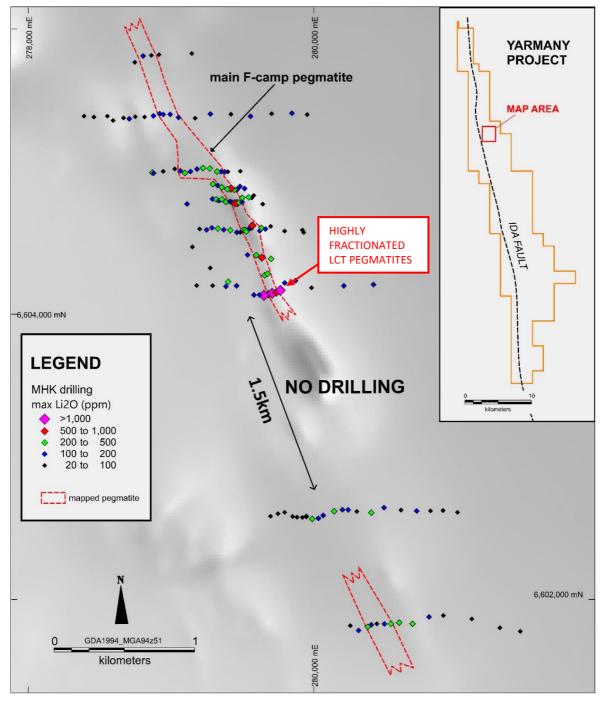


Figure 1. F-camp drilling (showing maximum Li₂O) over aeromagnetics

Assay results from an extensive auger geochemical sampling program completed in December (Figure 3) are expected shortly. These results will help the Company prioritise new lithium targets with drilling scheduled to commence in February. Drilling will also target several untested priority nickel sulphide VTEM anomalies located in the southern portion of

the Yarmany project area (see ASX announcement 28 September 2023). This multi-pronged drilling approach ensures the highest probability of exploration success and ongoing news flow.

DISCUSSION

The Company's maiden drilling programs at the F-camp prospect included 148 AC holes for a total of 5,865m and 6 RC holes for 1,262m (see ASX announcements <u>4 December 2023</u> and <u>20 December 2023</u>).

The drilling was successful in determining the thickness, orientation and frequency of pegmatites under the sparsely outcropping pegmatites that were mapped during the early stages of exploration. The target pegmatite swarm at F-camp has now been mapped over a strike of 2.3km north-northwest and is up to 300m wide. It comprises feldspar-quartz-muscovite pegmatite sheets individually up to 58m wide downhole^[1] (YRC23002, 109m to 167m), but typically 5-15m true width. The sheets extend under cover to the west for at least a further 350m from the main belt. The geometry of the pegmatites drilled at F-camp is typical of pegmatites in the Goldfields: flat-lying to gently west-dipping tabular sheets, anastomosing along and across strike. The pegmatite thicknesses maxima appears to be controlled by contacts between metasedimentary and mafic-ultramafic amphibolites, although the feeder system may have stronger connections with the Ida Fault that passes through F-Camp.

Although no economic grades were intersected in the drilling, Li and pathfinder elements (Cs, Rb, Ta, Sn, Nb) are elevated, peaking at 1484ppm Li₂O in YMRC23006 (see Figure 2 and Table 1). There has also been considerable dispersion of lithium into the host-rocks, indicating that the system is fertile, but temperatures were too high to preserve primary lithium phases. The most notable feature is a north to south increase in Li and pathfinder elements (see Figure 2) and a diminishment of aplite (microgranite) phases towards the southern-most line at F-camp. No holes were planned south of this line due to thicker sand cover (5-10m), resulting in no outcrop and supressed soil geochemical signatures. The next line south is 1.5km (see Figure 1), meaning there is genuine potential for more favourable conditions for advanced fractionation and lithium mineralisation in between these traverses. Auger soil sampling of this target area has been completed and assays are pending. The Company will be drill-testing this target in the upcoming drill campaign.

Metal Hawk has explored only a small part of the tenement package at Yarmany, where outcropping pegmatite is obvious. Numerous geochemical anomalies have been identified from historical surface sampling further to the south (over a strike of ~35km) and the Company is confident further targets will emanate from the current 1,800-hole auger program, which is designed to extend and infill the broad geochemical dataset at Yarmany.

Metal Hawk is well-funded to test these targets, with heritage clearances completed for an additional 14 traverses to be drilled on the project.

^[1] True width in YRC23002 is uncertain due to absence of nearby drilling to enable determination of geometry.

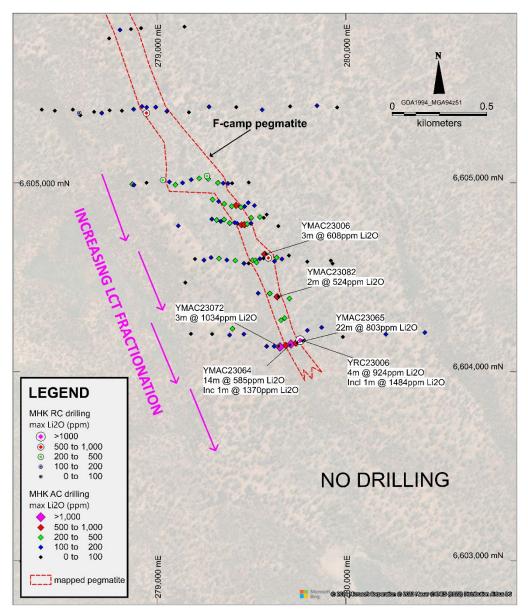


Figure 2a. MHK drilling showing maximum Li2O (ppm) at F-camp

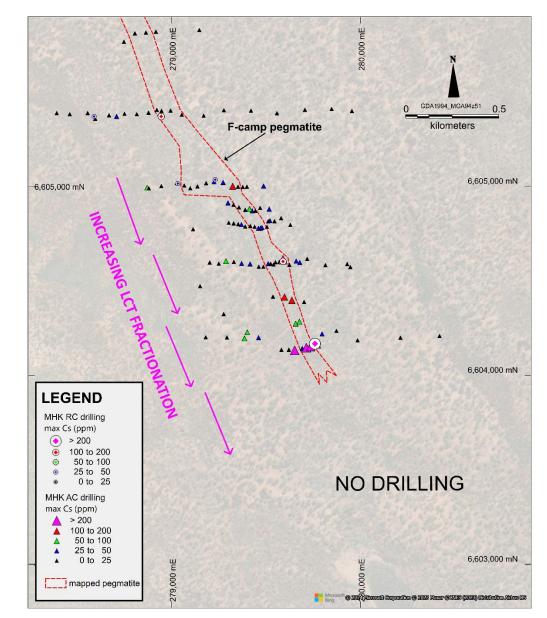


Figure 2b. MHK drilling showing maximum Cs (ppm) at F-camp

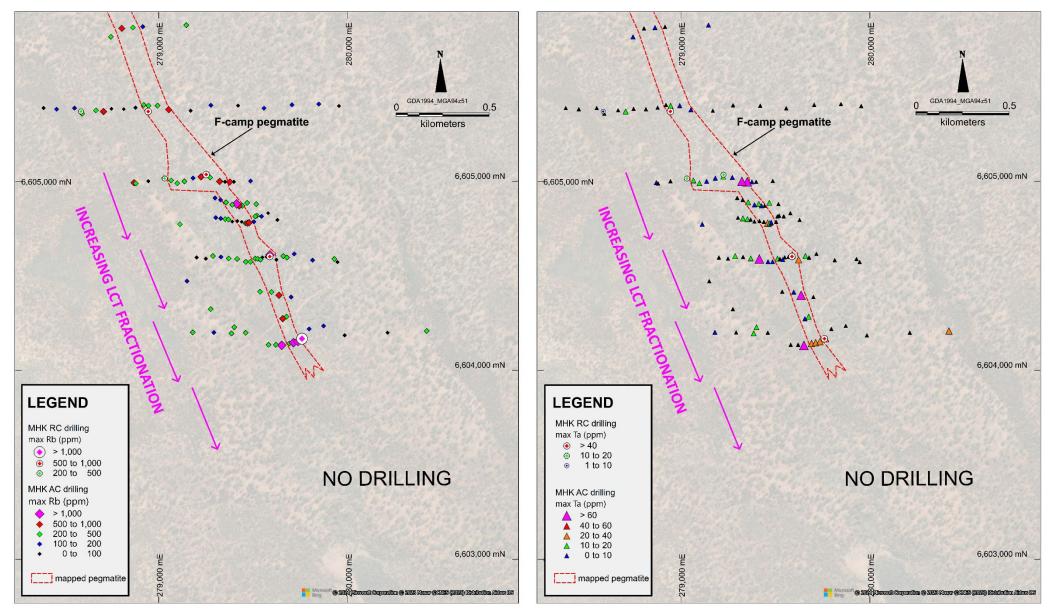


Figure 2c. MHK drilling showing maximum Rb (ppm) at F-camp

Figure 2d. MHK drilling showing maximum Ta (ppm) at F-camp

No and Andrews

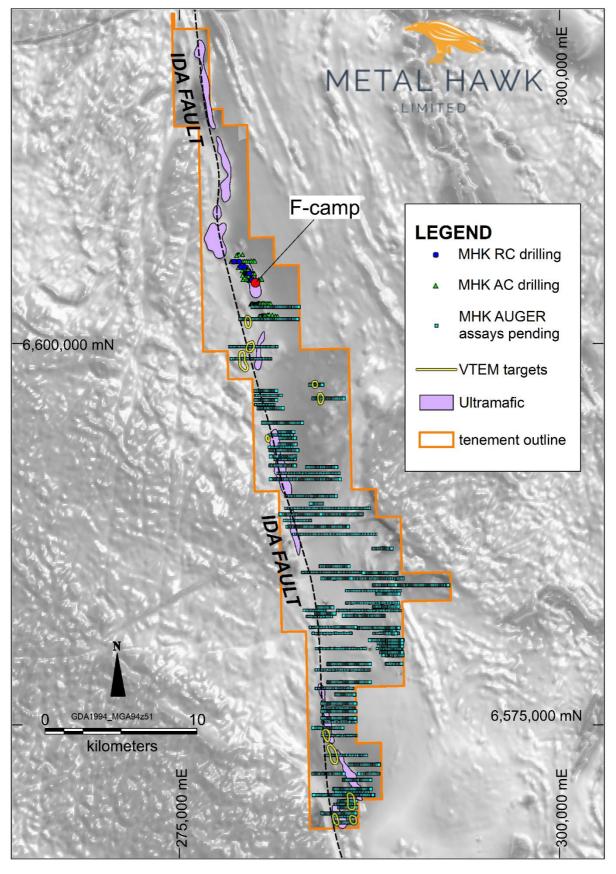


Figure 3. Yarmany Project showing MHK's AC, RC and Auger drilling (assays pending)

The second second

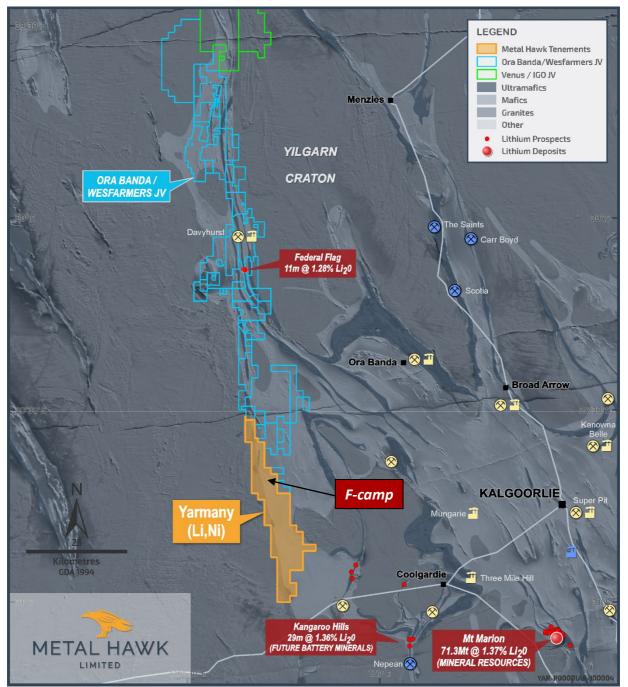


Figure 4. Yarmany Project location

This announcement has been authorised for release by Mr Will Belbin, Managing Director, on behalf of the Board of Metal Hawk Limited.

For further information regarding Metal Hawk Limited please visit our website at <u>www.metalhawk.com.au</u> or contact:

Will Belbin Managing Director Metal Hawk Limited +61 478 198 665 Media & Investor Relations Luke Forrestal GRA Partners +61 411 479 133

admin@metalhawk.com.au

luke.forrestal@grapartners.com.au

Competent Person statement

The information in this announcement that relates to Exploration Targets and Exploration Results is based on information compiled and reviewed by Mr William Belbin, a "Competent Person" who is a Member of the Australian Institute Geoscientists (AIG) and is Managing Director at Metal Hawk Limited. Mr Belbin is a full-time employee of the Company and hold shares and options in the Company. Mr Belbin has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Belbin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Metal Hawk Limited's planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

Table 1a. Significant results from RC drilling

HOLENO	FROM	то	interval m	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm	K/Rb ratio	Pegmatite Interval	
YRC23001	65	66	1	763	174	743	14	17	24	65 - 107m	
TRC23001	74	86	12	531	29	389	14	4	58		
YRC23004	164	165	1	652	177	702	5	47	36	164 - 165m	
YRC23006	39	43	4	925	186	759	12	8	21	36 - 44m	
INCLUDING	41	42	1	1484	287	1212	23	10	20	30 - 44m	
and	107	108	1	503	48	690	17	9	39	106 - 110m	

Table 1b. Significant results from AC drilling

HOLENO	FROM	то	interval m	Li2O ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm	K/Rb ratio	Pegmatite Interval	
	35	38	3	608	100	633	4	7	22	29 F6m	
YMAC23006	43	45	2	590	9	363	20	8	48	38 - 56m	
	21	23	2	714	31	240	25	8	64	20 20m	
YMAC23025	30	33	3	514	23	214	10	16	30	20 - 30m	
	13	14	1	985	12	405	31	8	50		
	18	21	3	526	10	213	17	6	66		
YMAC23026	23	24	1	574	7	174	17	4	73	9 - 36m	
	26	27	1	531	6	181	15	3	71		
	36	39	3	588	14	159	7	0	41]	
YMAC23033	14	15	1	610	11	432	19	6	43	0 - 22m	
YMAC23063	19	21	2	619	43	395	35	22	28	17 - 21m	
YMAC23064	7	21	14	585	110	705	20	8	41	7 - 23m	
INCLUDING	7	8	1	1370	369	1802	22	12	15	7 - 25111	
YMAC23065	23	45	22	803	126	804	31	16	50	1 - 10m & 17 - 46m	
YMAC23066	35	39	4	941	167	651	9	21	24	35 - 38m	
YMAC23072	23	26	3	1034	230	1367	63	42	23	22 21m	
TWIAC25072	30	31	1	696	391	1066	25	13	17	23 - 31m	
YMAC23082	15	17	2	524	110	845	15	51	21	15 - 17m	

*Notes to Tables 1a and 1b:

- minimum reporting grade 500ppm Li₂O

- Peak Li assays in AC and RC drilling shown in bold

Table 2a. RC drillhole collars

HOLE ID	DEPTH (M)	DRILL TYPE	EAST_GDA2020z51	NORTH	Dip	Azimuth_TN
YRC23001	150	RC	279622	6604607	-65	264
YRC23002	234	RC	279280	6605037	-75	270
YRC23003	240	RC	279032	6605015	-90	0
YRC23004	258	RC	278874	6605381	-65	96
YRC23005	198	RC	278589	6605370	-90	0
YRC23006	182	RC	279766	6604167	-80	274

*Notes to Table 2a:

- Grid coordinates GDA2020: zone51, collar positions determined by handheld GPS.
- All holes nominal RL 500m +/-1m AHD.

Table 2b. AC drillhole collars

HOLE ID	DEPTH (M)	DRILL TYPE	EAST_GDA2020z51	NORTH	Dip	Azimuth_TN
YMAC23001	24	AC	279511	6604591	-60	270
YMAC23002	24	AC	279524	6604590	-60	270
YMAC23003	36	AC	279539	6604586	-60	240
YMAC23004	37	AC	279549	6604598	-60	270
YMAC23005	34	AC	279570	6604601	-60	270
YMAC23006	58	AC	279589	6604611	-60	300
YMAC23007	33	AC	279623	6604585	-60	270
YMAC23008	53	AC	279659	6604605	-60	270
YMAC23009	36	AC	279678	6604597	-60	270
YMAC23010	39	AC	279717	6604616	-60	270
YMAC23011	39	AC	279814	6604583	-60	270
YMAC23012	39	AC	279929	6604589	-60	270
YMAC23013	39	AC	279946	6604573	-60	270
YMAC23014	60	AC	279628	6604796	-60	150
YMAC23015	41	AC	279579	6604832	-60	70
YMAC23016	60	AC	279544	6604815	-60	90
YMAC23017	57	AC	279520	6604819	-60	90
YMAC23018	39	AC	279302	6604808	-60	270
YMAC23019	30	AC	279328	6604804	-60	270
YMAC23020	31	AC	279352	6604800	-60	255
YMAC23021	33	AC	279369	6604798	-60	300
YMAC23022	22	AC	279389	6604787	-60	275
YMAC23023	18	AC	279416	6604790	-60	270
YMAC23024	30	AC	279439	6604786	-60	270
YMAC23025	36	AC	279459	6604778	-60	270
YMAC23026	39	AC	279470	6604779	-60	265
YMAC23027	45	AC	279478	6604782	-90	0
YMAC23028	39	AC	279504	6604786	-60	270
YMAC23029	39	AC	279511	6604815	-60	270
YMAC23030	40	AC	279468	6604886	-60	60
YMAC23031	46	AC	279443	6604871	-60	80
YMAC23032	39	AC	279426	6604871	-60	90
YMAC23033	35	AC	279412	6604881	-60	90
YMAC23034	28	AC	279389	6604876	-60	90
YMAC23035	37	AC	279356	6604889	-90	0
YMAC23036	32	AC	279327	6604902	-90	0
YMAC23037	25	AC	279298	6604912	-60	270
YMAC23038	53	AC	279516	6604880	-90	0
YMAC23039	46	AC	279486	6605002	-90	0
YMAC23040	46	AC	279398	6604998	-90	0

YMAC23041	40	AC	279376	6604997	-90	0
YMAC23041	40	AC	279351	6604998	-90	0
YMAC23042	32	AC	279323	6605000	-90	0
YMAC23043	33	AC	279323	6605021	-90	0
YMAC23045 YMAC23046	65	AC	279224	6605024	-90	0
	56	AC	279182	6605017	-90 -90	0
YMAC23047	43 49	AC AC	279136 279098	6605000	-90	0
YMAC23048 YMAC23049	33		-	6604990 6605005		0
YMAC23049 YMAC23050		AC	279066		-90 -90	0
	25	AC	279027	6605018		
YMAC23051	28	AC AC	278945	6605001	-90 -90	0
YMAC23052 YMAC23053	19	AC	278870 278879	6604993 6604989	-90	0
	20	AC	279113		-90	0
YMAC23054			-	6604773		
YMAC23055	19	AC	279201	6604597	-90	0
YMAC23056	16	AC	279249	6604591	-90	0
YMAC23057	16	AC	279287	6604605	-90	0
YMAC23058	29	AC	279329	6604600	-90	0
YMAC23059	37	AC	279370	6604592	-90	0
YMAC23060	37	AC	279415	6604589	-90	0
YMAC23061	20	AC	279461	6604574	-90	0
YMAC23062	31	AC	279485	6604574	-90	0
YMAC23063	33	AC	279691	6604142	-60	260
YMAC23064	34	AC	279713	6604146	-60	285
YMAC23065	46	AC	279736	6604152	-90	0
YMAC23066	42	AC	279766	6604167	-90	0
YMAC23067	76	AC	279796	6604219	-90	0
YMAC23068	78	AC	279872	6604235	-90	0
YMAC23069	63	AC	279984	6604185	-90	0
YMAC23070	75	AC	280211	6604199	-90	0
YMAC23071	47	AC	280418	6604208	-90	0
YMAC23072	37	AC	279651	6604132	-90	0
YMAC23073	33	AC	279620	6604135	-90	0
YMAC23074	33	AC	279581	6604135	-90	0
YMAC23075	45	AC	279460	6604199	-90	0
YMAC23076	46	AC	279385	6604195	-90	0
YMAC23077	24	AC	279292	6604200	-90	0
YMAC23078	21	AC	279180	6604201	-90	0
YMAC23079	23	AC	279656	6604273	-90	0
YMAC23080	36	AC	279676	6604284	-90	0
YMAC23081	58	AC	279701	6604388	-90	0
YMAC23082	39	AC	279636	6604397	-90	0
YMAC23083	30	AC	279597	6604414	-90	0
YMAC23084	24	AC	279536	6604416	-90	0
YMAC23085	27	AC	278391	6605388	-90	0
YMAC23086	36	AC	278460	6605382	-90	0
YMAC23087	39	AC	278555	6605388	-90	0
YMAC23088	39	AC	278595	6605358	-90	0
YMAC23089	18	AC	278668	6605376	-90	0
YMAC23090	36	AC	278708	6605370	-90	0
YMAC23091	33	AC	278750	6605384	-90	0
YMAC23092	18	AC	278815	6605382	-90	0
YMAC23093	27	AC	278877	6605390	-90	0
YMAC23094	49	AC	278946	6605400	-90	0
YMAC23095	29	AC	278994	6605401	-90	0
YMAC23096	50	AC	279053	6605379	-90	0
YMAC23097	29	AC	279169	6605374	-90	0

and associate

man to

YMAC23098	72	AC	279276	6605403	-90	0
YMAC23099	49	AC	279420	6605401	-90	0
YMAC23100	72	AC	279557	6605387	-90	0
YMAC23101	69	AC	279705	6605405	-90	0
YMAC23102	76	AC	279847	6605409	-90	0
YMAC23103	63	AC	279954	6605399	-90	0
YMAC23104	45	AC	278921	6605405	-90	0
YMAC23105	39	AC	279697	6602584	-90	0
YMAC23106	39	AC	279750	6602602	-90	0
YMAC23107	30	AC	279796	6602611	-90	0
YMAC23108	21	AC	279852	6602582	-90	0
YMAC23109	21	AC	279883	6602577	-90	0
YMAC23110	20	AC	279920	6602576	-90	0
YMAC23111	33	AC	279948	6602582	-90	0
YMAC23112	30	AC	279962	6602582	-60	270
YMAC23113	21	AC	279989	6602565	-90	0
YMAC23114	29	AC	280032	6602570	-90	0
YMAC23115	27	AC	280066	6602590	-90	0
YMAC23116	43	AC	280143	6602619	-90	0
YMAC23117	51	AC	280201	6602630	-90	0
YMAC23118	65	AC	280241	6602629	-90	0
YMAC23119	52	AC	280301	6602617	-90	0
YMAC23120	39	AC	280403	6602609	-90	0
YMAC23121	61	AC	280492	6602644	-90	0
YMAC23122	81	AC	280611	6602627	-90	0
YMAC23123	60	AC	280721	6602621	-90	0
YMAC23124	44	AC	280817	6602622	-90	0
YMAC23125	41	AC	280905	6602624	-90	0
YMAC23126	54	AC	281007	6602611	-90	0
YMAC23127	7	AC	280256	6601817	-90	0
YMAC23128	57	AC	280379	6601809	-90	0
YMAC23129	36	AC	280403	6601823	-90	0
YMAC23130	21	AC	280442	6601830	-90	0
YMAC23131	18	AC	280495	6601829	-90	0
YMAC23132	42	AC	280540	6601830	-90	0
YMAC23133	50	AC	280598	6601838	-90	0
YMAC23134	42	AC	280691	6601830	-90	0
YMAC23135	57	AC	280807	6601878	-90	0
YMAC23136	39	AC	280908	6601888	-90	0
YMAC23137	46	AC	281107	6601864	-90	0
YMAC23138	39	AC	281303	6601802	-90	0
YMAC23139	54	AC	281446	6601777	-90	0
YMAC23140	33	AC	280314	6601783	-90	0
YMAC23141	42	AC	279400	6604228	-90	0
YMAC23142	30	AC	279275	6604324	-90	0
YMAC23143	30	AC	279150	6604472	-90	0
YMAC23144	54	AC	278805	6605810	-90	0
YMAC23145	40	AC	278863	6605814	-90	0
YMAC23145	60	AC	279146	6605827	-90	0
YMAC23147	72	AC	278916	6605819	-90	0
YMAC23148	33	AC	278747	6605765	-90	0
*Notes to Tabl					1 2 -	

*Notes to Table 2b:

Grid coordinates GDA2020: zone51, collar positions determined by handheld GPS.
 All holes nominal RL 500m +/-1m AHD

All holes nominal RL 500m +/-1m AHD.

2012 JORC Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

	JORC Code explanation	Commentary
Sampling techniques	JORC Code explanation Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Commentary 148 aircore (AC) holes for a total of 5,865m and 6 RC holes for 1262m were completed as part of this program. Hole depths ranged from 7m to 81m (AC) and 150m to 258m (RC). AC holes were angled at either vertical (-90°) and -60° and drilled to the west (~270°) or east (~090°). RC holes were drilled at angles between vertical (- 90°) and -65° and drilled to the west (~270°) or east (~090°). Drill collar summary in Tables 2a and 2b in the body of this announcement. Logging of drill samples included lithology, colour, weathering, texture, moisture and contamination. Sampling protocols and QAQC are as per industry best practice procedures. Sampling was undertaken using standard industry practices. AC drilling was sampled using a combination of composite sampling (2-11m) and single 1m sampling, averaging 4m in length. RC sampling was as 2-6m composites or single 1m, averaging 3m in length. The entire drilled intervals of all holes were sampled. In all, 1525 AC samples and 417 RC samples were collected, including QAQC.
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is priorited and if so, by what method, etc)	Sample weights are typically 1-3kg for 1n samples and 2-5kg for composites. All samples were sent to Intertek Genalysis in Kalgoorlie for analysis (see below). AC drilling was undertaken by KTE Drilling based in Kalgoorlie using a 4x4 mounted aircore drill rig and 85mm blade or slimline hammer bit. RC drilling was also undertaken by KTE Drilling using a 6x6 mounted modified Schramm 450 RC
Drill sample recovery	oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed	AC: sample condition was visually assessed and noted during sampling and was found to dry in al but a few cases, where damp spoils were noted.
	Measures taken to maximise sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC: sample condition and recovery was visually assessed and noted during logging. Overall, 85% of samples were dry and 15% were wet or damp Where wet, sample recovery diminished to as little as 20%, but generally 70-90% recovery was estimated.

The recovery was considered normal for this type of drilling and with groundwater present in some holes.

All AC holes were generally drilled to blade refusal, however, on ~20% of occasions, a hammer bit was then used to extend the hole into harder lithologies. Holes were then terminated when penetration rates became impractical or target depth was reached. A qualified geologist logged all drill holes in full and Logging Whether core and chip samples have been geologically and geotechnically logged to a supervised the sampling. level of detail to support appropriate Mineral AC and RC holes were logged in full. RC holes Resource estimation, mining studies and were logged to a sufficient level to support a metallurgical studies. mineral resource in the future. Whether logging is qualitative or quantitative in Photographs were taken of all sample spoils and nature. Core (or costean, channel, etc) photography. chip trays. The total length and percentage of the relevant intersections logged. Sub-sampling If core, whether cut or sawn and whether AC: 1-metre interval drill spoils were passed techniques quarter, half or all core taken. through a cyclone and collected in a bucket which and sample was then emptied on the ground for logging and preparation If non-core, whether riffled, tube sampled, sampling purposes. A 400g-1000g sub-sample rotary split, etc and whether sampled wet or was taken from each one-metre interval using a drv. sampling scoop. Sub-samples for single (1m) or composite intervals were then placed in a pre-For all sample types, the nature, quality and numbered calico bag. appropriateness of the sample preparation technique. RC: drill spoils were split using a cone splitter via a cyclone and then presented as a large primary Quality control procedures adopted for all subsample on the ground (via a bucket) and a 1m split sampling stages to maximise representivity of in calico bags numbered with hole depth (2-4kg). samples. Single (1m) sub-samples were collected using the calico split, while composite sub-samples were Measures taken to ensure that the sampling is collected via a scoop of 400g-1000g from the representative of the in situ material collected, primary spoils. All samples were placed into preincluding for instance results for field numbered calico bags. duplicate/second-half sampling. Sample preparation at Intertek Genalysis Whether sample sizes are appropriate to the Laboratories, Kalgoorlie, included sorting, drying grain size of the material being sampled. and pulverizing (85% passing 75 µm) in a LM5 steel mill Field QC procedure involves certified reference material ("CRM"), splits and duplicates, inserted by MHK in the field. Duplicates and CRMs are inserted at a rate of approximately 1:50 each. Laboratory QAQC results (repeats, standards, blanks) are reported by the laboratory with final assay results. Review of the various QAQC data indicate that sampling and analysis methodology are reasonable for this stage of exploration. The sample size is considered adequate to minimise particle size effects at this early stage of exploration. However, more rigorous sample procedures, including use of a rotary splitter and spearing composite samples, will be implemented

once economic grades are encountered.

and the second

Quality of	The nature, quality and appropriateness of the	All MHK samples were analysed at Intertek
assay data and laboratory tests	assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading	Genalysis in Perth for 48 elements via four acid digest with ICP-OES and ICP-MS finish (lab code "4A/MS"). This digest is considered near total, but some refractory phases may remain undissolved or partly dissolved, including cassiterite, tantalite and zircon. The detection limit for lithium is 0.1ppm.
	times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and	Should economic mineralisation be encountered, MHK will implement a trigger for sodium peroxide fusion and ICP-OES for lithium and associated target elements such as Sn, Ta and Nb. This method is considered to be a total digest. No geophysical tools have been utilised for
	precision have been established.	reporting herein. Handheld XRF is used ad hoc in the field to identify rocktypes and alteration.
		Internal laboratory control procedures involve repeat assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed for consistency and any discrepancies.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior personnel from the Company have visually inspected drill samples.
	The use of twinned holes.	No economically significant assays were received and no holes were twinned in the current program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	Primary AC and RC data were collected using a standard set of Excel templates on a Toughbook laptop computer in the field or on hand-written log-sheets and then entered into the template. Data are entered using validation look-up-tables. These data are checked, validated and transferred to the company database.
		Metallic Lithium ppm was multiplied by a conversion factor of 2.15283 to report Li2Oppm. No other adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drillhole locations were established by handheld GPS, with RC collars measured using waypoint averaging. Collar coordinates are in UTM grid (GDA2020 z51). The GPS has an east/north accuracy of +/-4m, and for waypoint averaging +/-
	Specification of the grid system used. Quality and adequacy of topographic control.	2m. The RL from the GPS is considered inaccurate (+/-20m) and 3D drill data analysis is carried out using a nominal RL of 500m. This is considered reasonable, as topography is very flat, with small differences in elevation between drill locations. More precise RLs will be required for economic intersections in the future. These might be determined by DGPS or DTM.
		Drill collar summary in Tables 2a and 2b in body of report.

Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	The AC drillhole spacing along lines are between 10m and 200m apart, with most being 40m (see figures in report). Hole spacing was determined on the fly by the geologists based on results and objectives. The line spacings are a minimum of 400m and as little as 100m north-south. RC holes are spread apart in the order of 500m (see figures in report). Data from AC drilling is not suitable for estimation of Mineral Resources, but the RC data could potentially be utilised. Field sample compositing occurred over 2m to 11m intervals. No subsequent compositing has taken place.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Drill holes were mostly positioned (dip/azi) so that drilling was essentially perpendicular to the orientation of pegmatite sheets, the geometry of which was modelled on the fly. There are no historical records to determine this and the initial part of the program involved various drill orientations to assist in determining the overall geometry. The pegmatite sheets were found to be flat-lying to shallow west dipping, hence subsequent drillhole dips were either vertical or steep to the east. All drill traverses were along east-west lines cleared by back-hoe. No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Sample security for drilling is managed by the Company. After preparation in the field, samples are packed into labelled polyweave bags and dispatched by MHK to the laboratory preparation facility in Kalgoorlie. The assay laboratory audits the samples on arrival and reports and discrepancies back to the Company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review of the sampling techniques has been carried out.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Yarmany drill programs were conducted on the exploration licenses 15/1655, 16/503 and 15/507. The tenements are registered to Black Mountain Gold Limited. Metal Hawk has acquired an option to explore on the tenements.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Previous exploration has been carried out in the area by Matsa Resources, Metaliko Resources, Delta Gold and Horizon Minerals. Prior to Horizon's work, no previous lithium exploration has been

		ASX ANNOUNCEMENT
		carried out on the tenements. Their exploration was largely focused on nickel and gold, and the lithium component could be considered cursory.
Geology	Deposit type, geological setting and style of mineralisation.	The Yarmany Project is centred along the boundary of the Mt Ida Greenstones (Eastern Goldfields Superterrane) and Youanmi Terrane, represented by the Ida Fault, a significant Craton-scale structure.
		The geological setting is of Archaean age with common host rocks related to komatiite-hosted nickel sulphide mineralisation as found throughout the Yilgarn Craton of Western Australia. The region is also made up of mafic and felsic volcanics, siliciclastic metasediments of upper greenschist facies and post-orogenic S-type muscovite-bearing granites.
		Additional potential has been recently recognized for lithium mineralisation related to pegmatite occurrences that are interpreted to be late-stage volatile-rich emanations from the granites.
		Evidence for lithium potential at Yarmany is the Kathleen Valley (Liontown Resources) and Mt Ida (Delta Lithium) deposits to the north on the eastern margin of the Ida Fault (refer Figure in report).
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to drill results tables and the text of this announcement as applicable.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay intervals are either as sampled, or if aggregated, have been length-weighted. No top cuts were applied. A nominal cut-off of 500 ppm Li2O was applied with up to 2m of internal dilution allowed.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of	No metal equivalent values have been used or reported.
	metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	Relationships between drillhole profiles and pegmatite widths and Li2O intercept lengths vary between well constrained to unconstrained due to the presence or absence of nearby drilling. There is also likely to be anastomosing of pegmatite contacts across and along strike, as is the nature of sheet-style pegmatite intrusions. More detailed infill

		ASX ANNOUNCEMENT	ASX: MHK
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	drilling would be required to improve the confidence of geometry and true widths.	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in text.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant intercepts and summary of drill hole assay information are presented in Tables 1a and 1b in this announcement. Broader relevant elemental trends are depicted in the thematic map figures in the announcement.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of this announcement.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	AC and targeted RC drilling are at various stages of planning to quickly progress lithium exploration at Yarmany. In respect of F-camp, the Company is expecting assay results in the coming month from auger sampling immediately south of the anomalous drill intersections reported herein. Plans have already been put in place to drill a line of AC to the south, regardless of the auger results. Interpretation of the current data suggests that area has potential for a lower temperature, more fertile domain within the F-camp pegmatite swarm. More broadly, Metal Hawk is also expecting assay results for 1800 auger holes covering a broad footprint of the project, which when augmented with existing surface sampling, will add substantially to the targeting tools available to the Company. Numerous targets have already been generated and planning of target-follow up for lithium exploration is well advanced. Only 10% of the tenement area has been assessed thus far, where it is amenable to simple surface programs. A large proportion of the project is covered by a few metres of cover and is amenable to shallow low-cost drilling techniques. The company is also advancing exploration plans for ultramafic-hosted nickel in the project area, which by the regional association with lithium- bearing pegmatites, will augment the dedicated	

Martin Angel