

14th November 2023

STAGE-2 DRILLING RESULTS FROM FRASER SOUTH

- Second phase of AC drilling at Fraser South intersects additional zones of Rare Earth Element (REE) saprolite enrichment
- New results from wide-spaced drilling at Bozwood north zone extend trend of TREO¹ mineralisation to over 8km along the REE-bearing Booanya Granite
- Best results from the program include:
 - 22m @ 1193ppm TREO from 20m, incl. 10m @ 1916ppm TREO from 32m (FSAC040)
 - 14m @ 1604ppm TREO from 16m (FSAC049)
 - 26m @ 1313ppm TREO from 16m, incl. 12m @ 1787ppm TREO from 16m (FSAC050)

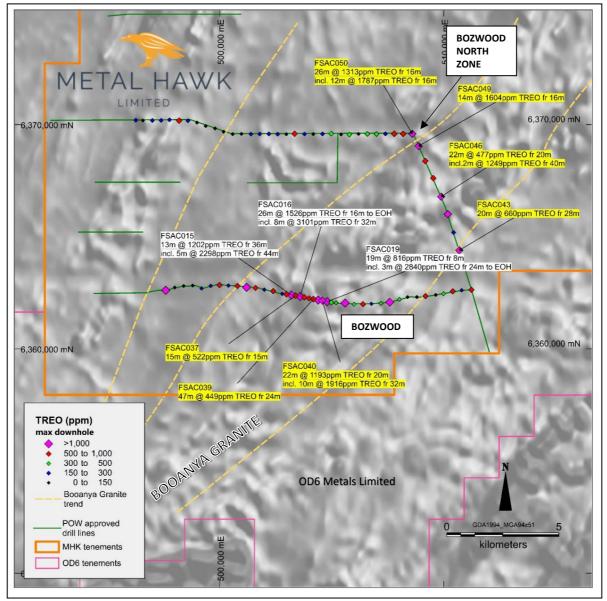
Metal Hawk Limited (**ASX: MHK**, "**Metal Hawk**" or the "**Company**") is pleased to report assay results from its Stage-2 aircore (AC) drilling program targeting Rare Earth Elements (REE) at the Fraser South project, located 150km north-east of Esperance, Western Australia. The program consisted of 46 vertical shallow AC holes for a total of 1,015m drilled.

Metal Hawk Managing Director Will Belbin commented: "Following the successful initial drilling campaign completed at Fraser South earlier this year, the second phase of drilling has delivered more thick high grade REE intercepts. As our efforts are now focused on the maiden lithium drill program at the Yarmany Project which has just commenced, we will revisit plans for further exploration at Fraser South in 2024."

The Fraser South drilling tested the continuation of the prospective north-northeast-trending Booanya Granite which strikes through the majority of the Fraser South project area. New results showing thick and shallow REE enrichment were returned at the Bozwood north zone (shown in Figure 1), including:

- 20m @ 660ppm TREO from 28m (FSAC043)
- 22m @ 477ppm TREO from 20m (FSAC046)
- 14m @ 1604ppm TREO from 16m (FSAC049)
- 26m @ 1313ppm TREO from 16m, incl. 12m @ 1787ppm TREO from 16m (FSAC050)

¹ TREO (Total Rare Earth Oxides) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Lu2O3 + Ho2O3 + Er2O3 + Tm2O3 + Y2O3 + Yb2O3



No. of the Constant

Six follow-up closer spaced (200m) holes were drilled at the Bozwood prospect, where the maiden drilling program carried out in May returned several shallow thick high-grade intersections of REE enrichment (See MHK ASX announcement 26 June 2023).

New results returned from Bozwood included:

- 22m @ 1193ppm TREO from 20m, incl. 10m @ 1916ppm TREO from 32m (FSAC040)
- 47m @ 449ppm TREO from 24m (FSAC039)
- 15m @ 522ppm TREO from 15m (FSAC037)

Figure 1. AC drillhole locations, maximum TREO (ppm) with highlights from Bozwood and Bozwood north zones, over aeromagnetics image (TMI). New results highlighted yellow.

These drilling results from Fraser South further highlight the high degree of REE mineral enrichment in the clay and saprolite zones formed from weathering of the REE-bearing granites in the region.

The Company is currently focusing on lithium and nickel sulphide exploration at the Yarmany Project and will assess next steps for continued exploration at Fraser South in 2024.

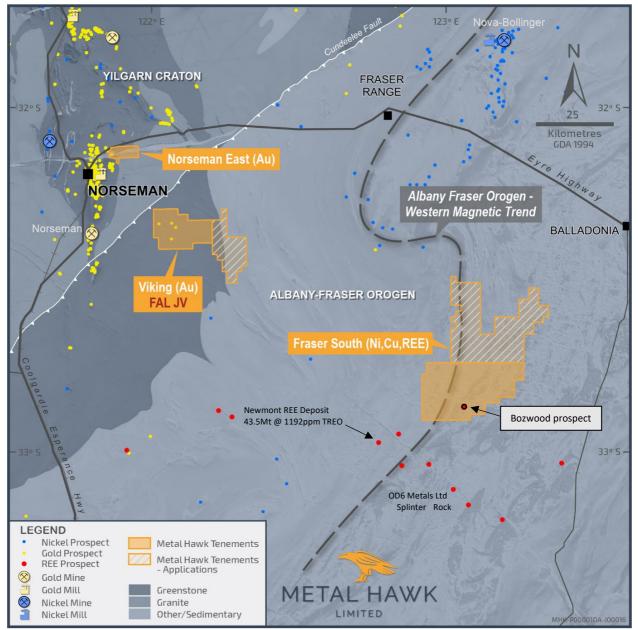


Figure 2. Fraser South Project location

This announcement has been authorised for release by Mr Will Belbin, Managing Director, on behalf of the Board of Metal Hawk Limited.

For further information regarding Metal Hawk Limited please visit our website at <u>www.metalhawk.com.au</u> or contact:

Will Belbin Managing Director Metal Hawk Limited +618 9226 0110

admin@metalhawk.com.au

Media & Investor Relations Luke Forrestal GRA Partners +61 411 479 144

luke.forrestal@grapartners.com.au

Competent Person statement

The information in this announcement that relates to Exploration Targets and Exploration Results is based on information compiled and reviewed by Mr William Belbin, a "Competent Person" who is a Member of the Australian Institute Geoscientists (AIG) and is Managing Director at Metal Hawk Limited. Mr Belbin is a full-time employee of the Company and hold shares and options in the Company. Mr Belbin has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Belbin consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Metal Hawk Limited's planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

About Metal Hawk Limited

Metal Hawk Limited is a Western Australian mineral exploration company focused on early-stage discovery of critical metals. Metal Hawk owns a number of quality projects in the Eastern Goldfields and the Albany Fraser regions.

The Yarmany Project covers an area of 282km² with 50km of strike along the Ida Fault, a major regional structure and crustal boundary between the Kalgoorlie and Youanmi Terranes. Since acquiring the project in July 2023 Metal Hawk has generated a number of quality lithium and nickel sulphide targets.

In September 2021 Metal Hawk discovered high grade nickel sulphide and gold mineralisation at the Berehaven Project, located 20km southeast of Kalgoorlie. The Company has consolidated over 90km² of underexplored tenure at Berehaven, which is situated north of the Blair Nickel sulphide deposit.

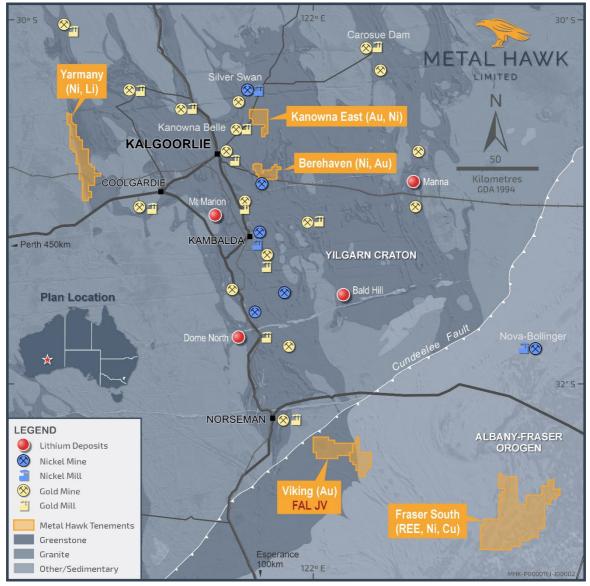


Figure 3. Metal Hawk Goldfields-Esperance project locations

 Table 1. Significant aircore intersections

	1					-		0													
Hole ID	from	to	Interval m	TREO ppm	MREO ppm	MREO %	CeO2 ppm	Dy2O3 ppm	Er2O3 ppm	Eu2O3 ppm	Gd2O3 ppm	Ho2O3 ppm	La2O3 ppm	Lu2O3 ppm	Nd2O3 ppm	Pr6O11 ppm	Sm2O3 ppm	Tb4O7 ppm	Tm2O3 ppm	Y2O3 ppm	Yb2O3 ppm
FSAC036	33	36	3	576.9	125.1	22%	201.3	6.4	3.1	2.2	8.5	1.2	192.0	0.4	88.3	29.3	12.2	1.2	0.4	28.0	2.6
FSAC036	42	51	9	768.4	171.1	22%	342.2	11.4	5.7	4.0	14.7	2.1	144.4	0.7	123.1	34.6	20.3	2.1	0.8	57.5	5.0
FSAC037	0	4	4	309.6	69.3	22%	125.8	5.4	2.8	1.7	6.8	1.0	61.8	0.4	49.1	13.9	8.1	1.0	0.4	29.1	2.5
FSAC037	15	30	15	522.2	91.4	18%	258.7	5.1	2.5	2.0	7.1	0.9	123.5	0.3	65.5	19.9	9.8	1.0	0.3	23.7	2.1
FSAC038	16	18	2	807.4	169.8	21%	364.4	8.0	3.9	2.9	11.5	1.5	189.5	0.5	122.7	37.6	17.5	1.5	0.5	42.2	3.2
FSAC039	24	71	47	449.5	98.5	22%	189.8	5.9	3.1	1.9	7.8	1.1	101.2	0.4	70.6	20.9	10.6	1.1	0.4	31.9	2.8
FSAC040	20	42	22	1193.1	232.9	20%	566.8	8.0	3.7	3.0	12.7	1.3	308.6	0.5	168.5	54.9	21.2	1.6	0.5	38.8	3.2
INCLUDING	32	42	10	1916.9	378.1	20%	921.4	12.6	5.7	4.7	20.3	2.1	482.5	0.7	274.3	88.8	34.1	2.5	0.8	61.7	4.8
FSAC041	12	13	1	471.3	48.2	10%	283.7	1.2	0.5	1.3	2.2	0.2	125.7	0.1	33.8	12.9	3.8	0.2	0.1	5.1	0.5
FSAC042	28	40	12	417.4	75.4	18%	189.2	3.6	1.7	1.2	4.9	0.6	118.6	0.2	53.2	17.9	7.5	0.7	0.2	16.1	1.7
FSAC043	28	48	20	660.3	150.7	23%	272.9	7.6	3.6	2.7	10.5	1.3	166.9	0.4	108.1	33.6	16.5	1.4	0.5	30.8	3.2
FSAC043	52	84	32	717.2	151.6	21%	349.8	5.2	1.9	2.6	10.3	0.8	160.7	0.2	110.7	34.5	16.5	1.1	0.2	21.1	1.4
INCLUDING	56	64	8	1106.5	224.8	20%	573.2	6.9	2.2	2.9	14.4	1.0	235.5	0.2	164.3	52.1	24.0	1.5	0.3	26.4	1.5
FSAC045	20	24	4	820.3	140.2	17%	458.1	4.3	1.9	2.7	7.1	0.7	178.3	0.3	100.4	34.6	14.0	0.9	0.3	14.9	2.0
INCLUDING	22	24	2	1058.7	204.2	19%	583.7	5.8	2.3	4.0	10.1	0.9	212.2	0.3	147.0	50.2	20.7	1.2	0.3	17.8	2.2
FSAC046	12	16	4	649.6	142.3	22%	267.0	6.6	3.2	2.4	9.4	1.2	174.6	0.4	102.5	31.9	14.7	1.2	0.4	31.1	2.9
FSAC046	20	42	22	477.9	126.8	27%	121.1	4.6	2.1	2.5	6.6	0.8	182.0	0.3	90.5	30.9	11.8	0.9	0.3	21.9	1.8
INCLUDING	40	42	2	1249.8	490.1	39%	356.0	9.5	4.0	10.2	15.8	1.5	284.2	0.6	361.4	117.3	46.1	2.0	0.6	36.3	4.4
FSAC047	0	4	4	787.6	150.1	19%	392.7	3.6	1.4	2.3	6.4	0.6	207.3	0.2	108.5	37.3	13.0	0.8	0.2	12.4	1.2
FSAC048	0	4	4	396.1	83.3	21%	174.2	4.8	2.5	1.4	6.1	0.9	91.3	0.3	59.0	18.7	8.9	0.8	0.3	24.7	2.1
FSAC048	16	23	7	764.9	170.0	22%	329.4	8.9	4.7	3.1	12.1	1.6	170.7	0.6	122.6	36.9	18.8	1.6	0.7	49.1	4.1
FSAC049	16	30	14	1604.4	330.6	21%	765.2	14.1	6.7	4.9	20.4	2.5	363.2	0.6	238.0	75.8	32.9	2.6	0.8	72.2	4.6
FSAC050	16	42	26	1313.6	358.7	27%	404.7	27.0	14.0	6.0	33.3	5.0	293.3	1.6	253.5	73.5	42.2	4.7	1.9	141.6	11.4
INCLUDING	16	28	12	1787.0	543.1	30%	478.5	35.2	17.5	8.6	45.7	6.4	430.5	1.9	388.5	113.1	63.1	6.3	2.4	175.0	14.4
INCLUDING	36	42	6	1230.3	260.7	21%	452.4	30.1	17.3	5.3	32.0	6.0	231.3	2.0	175.5	50.1	32.6	4.9	2.3	174.0	14.3
FSAC051	20	24	4	357.0	57.5	16%	144.0	2.9	1.8	0.5	2.4	0.6	129.3	0.4	39.5	14.7	3.6	0.4	0.3	14.1	2.4
FSAC051	28	33	5	507.9	75.6	15%	267.3	2.4	1.1	0.8	3.5	0.4	140.0	0.2	53.0	19.7	6.4	0.5	0.1	11.5	1.0
FSAC052	28	32	4	596.4	125.3	21%	234.6	9.3	6.6	1.5	9.0	2.0	142.6	1.2	86.7	27.9	12.8	1.4	1.1	51.5	8.2
FSAC054	15	16	1	427.2	88.9	21%	169.6	8.3	4.4	1.9	9.0	1.6	86.7	0.5	61.1	18.1	10.7	1.4	0.6	49.4	3.7
FSAC055	19	20	1	434.0	59.2	14%	176.2	2.9	1.7	1.1	3.2	0.6	170.1	0.3	40.2	15.7	5.0	0.5	0.3	14.3	2.0
FSAC057	2	4	2	413.3	85.6	21%	158.6	9.5	5.5	1.8	9.7	1.9	76.6	0.8	57.6	17.0	10.8	1.6	0.8	56.2	5.2
FSAC059	20	24	4	486.2	109.5	23%	205.0	8.7	4.7	0.8	9.7	1.6	94.3	0.7	75.9	23.5	13.9	1.4	0.7	40.4	4.8
FSAC063	12	16	4	499.0	55.8	11%	211.0	2.3	0.9	0.6	2.9	0.4	210.3	0.1	37.4	15.6	4.6	0.4	0.1	11.6	0.8
FSAC076	8	20	12	509.6	97.5	19%	211.2	6.3	3.0	1.8	8.4	1.1	142.4	0.3	68.7	21.3	11.1	1.2	0.4	29.9	2.5
*Notes to Table																					

*Notes to Table 1

- Significant grade intervals based on intercepts > 300ppm TREO. Results > 1,000ppm shown in bold

- combination of 2m, 3m and 4m composite sampling except for end of hole intervals

- TREO (Total Rare Earth Oxides) = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Lu2O3 + Ho2O3 + Er2O3 + Tm2O3 + Y2O3 + Yb2O3

- MREO (Magnetic Rare Earth Oxides) = Pr6O11 + Nd2O3 + Tb4O7 + DyO2

an treasure

	Table 2. AC collar details							
HOLE ID	DEPTH	DRILL TYPE	GRID	EASTING	NORTHING	AZIMUTH	DIP	TOTAL DEPTH (m)
FSAC036	51	AC	MGA94z51	502981	6362437	0	-90	51
FSAC037	30	AC	MGA94z51	503385	6362376	0	-90	30
FSAC038	18	AC	MGA94z51	503782	6362299	0	-90	18
FSAC039	71	AC	MGA94z51	504182	6362217	0	-90	71
FSAC040	42	AC	MGA94z51	504585	6362149	0	-90	42
FSAC041	13	AC	MGA94z51	504984	6362067	0	-90	13
FSAC042	50	AC	MGA94z51	510940	6363601	0	-90	50
FSAC043	91	AC	MGA94z51	510693	6364397	0	-90	91
FSAC044	20	AC	MGA94z51	510438	6365189	0	-90	20
FSAC045	24	AC	MGA94z51	510180	6366005	0	-90	24
FSAC046	42	AC	MGA94z51	509883	6366790	0	-90	42
FSAC047	14	AC	MGA94z51	509531	6367611	0	-90	14
FSAC048	23	AC	MGA94z51	509173	6368379	0	-90	23
FSAC049	30	AC	MGA94z51	508875	6369042	0	-90	30
FSAC050	42	AC	MGA94z51	508592	6369589	0	-90	42
FSAC051	33	AC	MGA94z51	508187	6369584	0	-90	33
FSAC052	43	AC	MGA94z51	507792	6369591	0	-90	43
FSAC053	24	AC	MGA94z51	507400	6369587	0	-90	24
FSAC054	16	AC	MGA94z51	506997	6369577	0	-90	16
FSAC055	20	AC	MGA94z51	506592	6369583	0	-90	20
FSAC056	21	AC	MGA94z51	506195	6369584	0	-90	21
FSAC057	4	AC	MGA94z51	505788	6369554	0	-90	4
FSAC058	4	AC	MGA94z51	505416	6369561	0	-90	4
FSAC059	24	AC	MGA94z51	504981	6369597	0	-90	24
FSAC060	10	AC	MGA94z51	504592	6369581	0	-90	10
FSAC061	8	AC	MGA94z51	504179	6369579	0	-90	8
FSAC062	13	AC	MGA94z51	503787	6369580	0	-90	13
FSAC063	16	AC	MGA94z51	503349	6369589	0	-90	16
FSAC064	7	AC	MGA94z51	502979	6369572	0	-90	7
FSAC065	18	AC	MGA94z51	502593	6369574	0	-90	18
FSAC066	17	AC	MGA94z51	502200	6369588	0	-90	17
FSAC067	17	AC	MGA94z51	501792	6369583	0	-90	17
FSAC068	12	AC	MGA94z51	501397	6369578	0	-90	12
FSAC069	8	AC	MGA94z51	500976	6369585	0	-90	8
FSAC070	6	AC	MGA94z51	500585	6369574	0	-90	6
FSAC070	3	AC	MGA94z51	500182	6369679	0	-90	3
FSAC072	8	AC	MGA94z51	499800	6369826	0	-90	8
FSAC072	11	AC	MGA94z51	499383	6369937	0	-90	11
FSAC074	14	AC	MGA94z51	498995	6370092	0	-90	14
FSAC074 FSAC075	9	AC	MGA94251 MGA94251	498593	6370176	0	-90	9
FSAC075	20	AC	MGA94251 MGA94251	498392	6370174	0	-90	20
FSAC070	9	AC	MGA94251 MGA94251	497768	6370211	0	-90	9
FSAC077	20	AC	MGA94251 MGA94251	497394	6370184	0	-90	20
FSAC078 FSAC079	10	AC	MGA94251 MGA94z51	497394	6370184	0	-90 -90	10
	10	AC		497003			-90	
FSAC080 FSAC081	12	AC	MGA94z51 MGA94z51	496580	6370183 6370196	0	-90 -90	12 17
*Notes to Table			1010734231	450200	0370190	0	-30	1/

Table 2. AC collar details

*Notes to Table 1

- Nominal RL 400m

- Collar position determined by handheld GPS, accuracy +/- 3m

2012 JORC Table 1

SECTION 1: SAMPLING TECHNIQUES AND DATA

	JORC Code explanation	Commentary				
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the	46 aircore (AC) holes were completed as part of this program for 1015m. Hole depths ranged from 3m to 91m.				
	minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc).	AC holes were angled at -90. Drillhole locations were established by handheld GPS. Logging of drill samples included lithology, weathering, texture, moisture and contamination. Sampling protocols and				
	These examples should not be taken as limiting the broad meaning of sampling.					
	Include reference to measures taken to ensure sample representivity and the appropriate	QAQC are as per industry best practice procedures.				
	calibration of any measurement tools or systems used	AC drilling was sampled using a combination of composite sampling (2m – 4m) and single 1m sampling at end of hole.				
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	All MHK samples were sent to Intertek Genalysis in Kalgoorlie, crushed to 10mm, dried and pulverized (total prep) in LM5 units to produce a sub-sample. The pulps were then sent to Perth for analysis via multi-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids inTeflon Tubes. Analysed by Inductively Coupled Plasma Mass Spectrometry.				
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	AC drilling was used to obtain 1-metre samples that were passed through a cyclone and collected in a bucket which was then emptied on the ground.				
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	The sample recovery was visually assessed and noted.				
	Measures taken to maximise sample recovery and ensure representative nature of the samples	The recovery was considered normal for this type of drilling. AC samples were variably dry, damp and sometime wet. Sample condition was logged.				
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	All AC holes were drilled to blade refusal at a minimum.				
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	A qualified geologist logged all AC holes in full and supervised the sampling. Photographs were taken of all AC sample spoils.				
	estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.					
	The total length and percentage of the relevant intersections logged.					

TRANSIE.

Sub-sampling	If core, whether cut or sawn and whether quarter,	AC samples were scooped directly from drill sample piles.
techniques and	half or all core taken.	
sample		Samples were mostly dry, with damp or wet intervals
preparation	If non-core, whether riffled, tube sampled, rotary	recorded.
	split, etc and whether sampled wet or dry.	
		Field QC involves the use of Certified Reference Materials
	For all sample types, the nature, quality and	(CRM's) as assay standards.
	appropriateness of the sample preparation	
	technique.	No field duplicates were taken for AC drilling.
	Quality control procedures adopted for all sub-	Sample preparation included sorting, drying and pulverizing
	sampling stages to maximise representivity of	(85% passing 75 μm) in a LM5 steel mill.
	samples.	
		The sample sizes are considered more than adequate to
	Measures taken to ensure that the sampling is	ensure that there are no particle size effects.
	representative of the in situ material collected,	
	including for instance results for field	
	duplicate/second-half sampling.	
	dupicate/second-nail sampling.	
	Whether sample sizes are appropriate to the grain	
	size of the material being sampled.	
	size of the material being sampled.	
Quality of	The nature, quality and appropriateness of the	Samples were assayed at Intertek Genalysis Laboratories,
assay data and	assaying and laboratory procedures used and	Perth, using a rare-earth and multi-element analysis with a
laboratory tests	whether the technique is considered partial or total.	multi-acid digest including Hydrofluoric, Nitric, Perchloric and
		Hydrochloric acids inTeflon Tubes. Analysed by Inductively
	For geophysical tools, spectrometers, handheld	Coupled Plasma Mass Spectrometry.
	XRF instruments, etc, the parameters used in	
	determining the analysis including instrument make	No geophysical tools have been utilised for reporting
	and model, reading times, calibrations factors	mineralisation.
	applied and their derivation, etc.	
	applied and their derivation, etc.	Internal laboratory control procedures involve duplicate
	Natura of quality control propoduros adopted (a a	
	Nature of quality control procedures adopted (e.g.	assaying of randomly selected assay pulps as well as interna
	standards, blanks, duplicates, external laboratory	laboratory standards. All of these data are reported to the
	checks) and whether acceptable levels of accuracy	Company and analysed for consistency and any
	(i.e. lack of bias) and precision have been	discrepancies.
	established.	

Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior personne mineralisation in		any have visually insp	pected	
uccujing	The use of twinned holes.	 No aircore holes were twinned in the current program. Primary AC data was collected using a standard set of Excel templates on a Toughbook laptop computer in the field. These data are checked, validated and transferred to the company database. Rare earth element analysis was originally reported in elemental form but has been converted to relevant oxide concentrations as per the industry standard: 				
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.					
		Pr6011 + N Tb407 + D + Y203 + Y - MREO (Ma Nd203 + T Multielement res	Vd2O3 + Sm2O3 y2O3 + Lu2O3 + 'b2O3 gnetic Rare Ear b4O7 + Dy2O3 ults (REE) are co	kides) = La2O3 + Ce + Eu2O3 + Gd2O3 • Ho2O3 + Er2O3 + T th Oxides) = Pr6O1 powerted to stoichiom element-to-oxide conv	+ <i>Tm2O3</i> 1 + netric	
		Element	Conversion Factor	Oxide		
		Ce ppm	1.228	CeO2 ppm		
		La ppm	1.173	La2O3 ppm		
		Y ppm	1.27	Y2O3 ppm		
		Dy ppm	1.148	Dy2O3 ppm		
		Er ppm	1.143	Er2O3 ppm		
		Eu ppm	1.158	Eu2O3 ppm		
		Gd ppm	1.153	Gd2O3 ppm		
		Ho ppm	1.146	Ho2O3 ppm		
		Lu ppm	1.137	Lu2O3 ppm		
		Nd ppm	1.166	Nd2O3 ppm		
		Pr ppm	1.208	Pr6O11 ppm		
		Sm ppm	1.16	Sm2O3 ppm		
		Tb ppm	1.176	Tb4O7 ppm		
		Tm ppm	1.142	Tm2O3 ppm		
		Yb ppm	1.139	Yb2O3 ppm		
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	GPS unit.	is MGA_GDA94	established using a fi , zone 51 for easting,		
	Specification of the grid system used. Quality and adequacy of topographic control.	given the relatively fla ace used is a nomina				

to the second

Data spacing and	Data spacing for reporting of Exploration Results.	The vertical drillholes were spaced 400m apart on eastings.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Data from aircore drilling is not suitable for estimation of Mineral Resources. AC sample compositing occurred over 2m to 4m intervals, using a scoop from 1m sample piles. Composite sampling is undertaken using a stainless steel scoop on 1m samples and combined in a calico bag for a combined weight of approximately 2-3kg.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	All drill holes were vertical. Mineralisation is interpreted as horizontal clay horizons. No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Sample security for AC drilling is managed by the Company. After preparation in the field samples are packed into labelled polyweave bags and despatched to the laboratory. All samples were transported by the Company directly to the assay laboratory. The assay laboratory audits the samples on arrival and reports and discrepancies back to the Company.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review of the sampling techniques has been carried out.

SECTION 2: REPORTING OF EXPLORATION RESULTS

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The drilling program was conducted at the Fraser South project on tenements E69/3809 and E63/1936. The tenements are 100% owned by the Company.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	There has been minimal prior REE exploration conducted on the tenements. Historical work has included mapping, wide- spaced soil geochemistry and aeromagnetic surveys and interpretation.
		Recent significant work has been carried out to the south of the project by companies including OD6 Minerals Limited, West Cobar Metals Limited and Mt Ridley Mines Limited.
Geology	Deposit type, geological setting and style of mineralisation.	The rare earths mineralisation at the Fraser South Project occurs in the weathered profile in-situ above the Booanya Granite of the East Nornalup Zone of the Albany-Fraser Orogen.

		The Boonaya Granite is enriched in REEs.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	For AC drilling refer to drill results tables and the Notes attached thereto in the text as applicable.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 All reported AC assay intervals have been length weighted. No top cuts were applied. A cut-off grade of 300ppm TREO was applied. This is considered appropriate for exploration of clay-hosted REE mineralisation. Multielement results (REE) are converted to stoichiometric oxide (REO) using conversion factors. These factors are stated in Section 1 above. No sub-grade material has been included in mineralised intervals. No aggregate samples are reported. Significant AC grade intervals based on intercepts >300ppm TREO. No metal equivalent values have been used or reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Drillholes are drilled vertical and generally perpendicular to interpreted flat dipping clay mineralisation. The drilled width is approximately the true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures in text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All significant intercepts and summary of AC drill hole assay information are presented in Tables 1 and 2. in the body this announcement.
Other substantive	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey	All meaningful and material information has been included in the body of this announcement.

exploration data	results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further work will be planned following further analysis and interpretation.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	